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Lecture Outline

* Classification of Signals

* Basic Types of Digital Signals:
1) Unit Step
2) Impulse
3) Ramp
4) Exponential
5) Cosine
* Classification of DSP Systems:
1) Causality
2) linearity
3) Time Invariant
4) Stability
* Characterization of Digital Filters:

(1) Recursive (2) Non-Recursive
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Classification of Signals

 Multichannel and Multidimensional Signals

51(t)y = Asin3mt

s2(1) = Ae?>™ = Acos3mr + jAsin 31

51(1)
Sa(r) = | s(1)
53(_1'}

L(x,y,1)
Ix,y. 1) = [fgf.l’. }‘..f]:l

lp(x, v, 1)
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(n) = 08", ifn=>0
YW=10.  otherwise
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Classification of Signals

* Deterministic and Random Signals

B Deterministic Vs Random Deterministic signal
» A deterministic signal is a signal in which T T T mEmmE
each value of the signal is fixed and can

be determined by a mathematical

expression. The past, present and future

of a deterministic signal are known with

certainty. Because of this the future values

of the signal can be calculated from past

values with complete confidence.
« Example:x()=<"i5 a deterministic

signal.

» A random or stochastic signal has a lot of Random signal
uncertainty about its behawvior. The future S e
values of a random signal can't be
accurately predicted. The random signal
can be modeled using statistical
information about the signal.

» Examples: some common examples
of random signals are speech and
music.

MATLAB
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* Deterministic and Random Signals

South
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Classification of Signals

* Peroidic and Aperoidic Signals

B Periodic VS Aperiodic

» Periodic signals repeat with some period T, while aperiodic, or
nonperiodic, signals do not. We can define a periodic function through
the following mathematical expression, where t can be any number and

T is a positive constant
X(t) = x(t+T)
» The fundamental period of our function, x(t), is the smallest value of T
that allows above Equation to be true.

Periodic signals Aperiodic signals
Mhm

AV AVAVA SN Y U
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Classification of Signals

* Peroidic and Aperoidic Signals

Defining Periodicity of a discrete-time signal:

B For any continuous-time sinusoidal function x(t) = 4 cos(Q,t +6)
then it is always periodic with period I' =27z/Q,,.

Example 1: Show that x(t)=x(t+T)= g/ o

Solution 1: X(t+E)g/%T) = /% BT _ jau )07 _ e e

Recall that e’*" =cos(27) + jsin(27) =140 =1

Hence, =¢&** =x(t) Proved.

B For a discrete-time sinusoid, it may or may not be
periodic!

B So how can we say if a discrete function is periodic or
not??7?7?
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Classification of Signals

* Peroidic and Aperoidic Signals

B To decide if a discrete function is periodic or not, lets
assume, x(n)=cos(na, +6) is a periodic signal such that
, x(n)=x(n+N) then:
cos(ne, + &) =cos([n+ N]w, +8) =cos(new, + Nw, + 8) = cos(na, + 8 + Na, )

B According to our assumptionx( is a periodic signal,
therefore No,must be equal to the integer multiple of 21,
thus:

" No, =127 where | is the integer > 0.
Therefore, g, ey
N

» So forx(n)=cosiw, +6) to be periodic,@;must be a rational
multiple of 21T

» The periodicity of x(xn)is N, where o, =ir:;r, and | and N are the
smallest pnssmle integers. N
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Classification of Signals

Discrete Time Sinusoids

Continuous-time Sinusoids

To find the pericd T = 0 of a general continucus-time sinusoid
x(t) = Acos(wt + ¢):

x(t+ T)
Acos(w(t + T)+ @)
Acos(wt + ¢+ wT)

x(t)
A cos(wt + &)
Acos(wt + ¢ + 2wk)

2mk = wlT
2wk
T = —
where k = Z. Note: when k is the same sign as w, T = 0.

Therefore, there exists a T = 0 such that x(t) = x(t + T) and
therefore x(t) i1s | periodic |

Dr. Ali J. Abboud 12 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids

Periodicity

Recall if a signal x(t) is periodic, then there exists a T = 0 such that

x(t)=x(t+T)

f no T = 0 can be found, then x(t) is non-periodic.
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Classification of Signals

Discrete Time Sinusoids

Discrete-time Sinusoids

To find the integer peried N = 0 (i.e., (N = Z7) of a general
discrete-time sinusoid x[n] = Acos($2n + ¢):

— x|[n+ N]
Acos(S2(n + N) + @)
Acos({2in + & + QQN)

2N
2wk

(2

x[n

Acos(f2n + ¢
Acos(f2n + & + 2wk
27T

T el

=
|

=
|

where k = #.

Mote: there may not exist a kK € Z such that % s an integer.
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Classification of Signals

Discrete Time Sinusoids

Discrete-time Sinusoids

Example i: 2 = %r
2wk 2wk 22
N — p— p— |:|;'
37
2 gl 37
29 , _ _ .
N = ﬁk = |22 | for kK = 37; x[n] is periodic.
Example ii: 2 = 2
2wk 2wk
2 2
N = EZ7 does not exist for any k € &; x[n] is non-periodic.
Example iii: Q@ = 27
2mk 2wk
N = — — V' 2k
{2 2

N = EY does not exist for any k& = &; x[n] is not periodic.
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Classification of Signals

Discrete Time Sinusoids

Discrete-time Sinusoids

2wk
N = —
2wk k .
Q = N zzfrﬁzrr- o
——
RATIONAL

Therefore, a discrete-time sinusoid is periodic if its radian frequency
€2 i1s a rational multiple of .

Otherwise, the discrete-time sinusoid 1s non-periodic.

Dr. Ali J. Abboud 16 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids

| =

Example 1: 2 =7/6 = 7 -

The fundamental period i1s 12 which corresponds to kK = 1 envelope
cycles.
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Classification of Signals

Discrete Time Sinusoids

o

J |E1—l

ENVELOPE CYCLES %.01./*
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Classification of Signals

Discrete Time Sinusoids

Example 2: Q = 87w /31 = 7 - %

Es
|
w
e
g
-4
x-
|
$u

The fundamental peried is 31 which corresponds to &k = 4 envelope
cycles.
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Classification of Signals

Discrete Time Sinusoids

L 1
| | [
& .I{C — ] &
EMVELOPE CYCLES
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Classification of Signals

Discrete Time Sinusoids

Example 3: Q =1/6 =7 - 6%

x[n] = cos (g)

2wk 2wk
N — = — -'1 — 127k
?. 5
8]
N € Z" does not exist for any k € Z; x|n] is non-periodic.
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Classification of Signals

Discrete Time Sinusoids

[ | (“)
in, = Ccos| —
. [ n.’_ COs f)

N does not exist
! ‘ ] T NOT PERIODIC : I I
L L B
- i l [ l l l I l [ n
[
s .
] 111ls
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Classification of Signals

Discrete Time Sinusoids

Continuous- I'ime Sinusoids: Frequency and Rate
of Oscillation

x(t) = Acos(wt + @)

27 1
=377

Rate of oscillation increases as w increases (or T decreases).
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Classification of Signals

Discrete Time Sinusoids

w smaller

Dr. Ali J. Abboud 24
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Classification of Signals

Discrete Time Sinusoids

2m 1
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Classification of Signals

Discrete Time Sinusoids

Continuous- Time Sinusoids: Frequency and Rate
of Oscillation

Also, note that x;,(t) # xx(t) for all t for
x(t) = Acos(wyit + @) and xa(t) = Acos(wst + @)

when wy #£ ws.

Dr. Ali J. Abboud 26 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids

Discrete- Time Sinusoids: Frequency and Rate of
Oscillation

x|n] = Acos(Qln + &)

Rate of oscillation increases as {2 increases UP TO A POINT then
decreases again and then increases again and then decreases again

Dr. Ali J. Abboud 27 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids
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Classification of Signals

Discrete Time Sinusoids

Discrete- I ime Sinusoids: Frequency and Rate of
Oscillation

x[n] = Acos(Q2n + &)

Discrete-time sinusoids repeat as {2 increases!

Dr. Ali J. Abboud 29 Dept. of Computer and Software Engineering



Classification of Signals

Discrete Time Sinusoids

Discrete- Time Sinusoids: Frequency and Rate of
Oscillation

Let
x1[n] = Acos(2.n+ @) and x3[n] = Acos($2an + &)

and €1, = £y + 27wk where k = Z:

x-[n] = Acos(fl.n+ &)

1l
S S N
O 0 0
Q 0 0
[ I I |
DDy,
= 3 °
+ 4+ T
S
=
I3 <
X 4+ 1
RS
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Classification of Signals

Discrete Time Sinusoids

AV
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Classification of Signals

Discrete Time Sinusoids

&IE o1 ‘[ 2 5]5
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Classification of Signals

Discrete Time Sinusoids

Discete- I ime Sinusoids: Frequency and Rate of
Oscillation

x[n] = Acos(Q2n + &)

can be considered a sampled version of
x(t) = Acos(Q2t + o)

at integer time Instants.

As {1 increases, the samples miss the faster oscillatory behavior.
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Classification of Signals

* Peroidic and Aperoidic Signals

Example 2. Determine which of the sinusoids are periodic and
compute their fundamental period.

(a)cos0.01mwn
Solution 2: cos(0.017n ) = tn{lnx n'ﬂlﬂ}= tﬂ{lﬂiﬂ)
2 200

which means that the signal is periodic with f = 1/200 and
fundamental period N = 200.

(b) cos(n30n/105)
Solution: [ 30 ] ( 30 J [ 1 J
Cos| T——n |=cos| 27 n |=cos| 2m—n
105 105x2 7

I.e. the signal is periodic with f = 1/7 and fundamental period = 7.
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Classification of Signals

* Peroidic and Aperoidic Signals

Tutorials 1:

(a) cos(3n)

(b) 3cos(5n + n/6)

(c) x[n] = cos(nn/2) — sin(nn/8) + 3cos(nn/4 + w/3)

Dr. Ali J. Abboud 35 Dept. of Computer and Software Engineering



Classification of Signals

* Peroidic and Aperoidic Signals

/\ / \ /\ g /K g
—4 —2 0 v 4
(a) -3t (b)

N4
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() (d)
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—8 —6 —4111 0 2 41118 -5 <4 -3 -2-1 0 1 2 3 4

(e) o (fy
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Classification of Signals

e Causal Vs. Anticausal Vs. Noncausal

B Causal Vs Anticausal Vs Noncausal
» Causal signals are signal A causal signal
that are zero for all negative T‘ﬂuﬁvﬂt
time. e

» Anticausal are signals that An ﬂnﬁcausf signal
_ . it}
are zero for all positive time.

7 |‘|~}‘

» Noncausal are signals that zera hare
have nonzero values In both A noncausal signal
positive & negative time. ﬂ

S -

Dr. Ali ). Abboud 37 Dept. of Computer and Software Engineering



Classification of Signals

* Right Handed Vs. Left Handed

B Right Handed Vs Left Handed

» Right handed signal is defined as any signal where
X(n) = 0 for n<N<e.

» Left handed signal is defined as any signal where
X(n) = 0 for n>N>e.

Right-handed signal Left-handed signal
A A
l /-—\'\,_,""- . 4e "'—""’.\.._...---\ l
< > < >
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Classification of Signals

* Finite Vs. Infinite Length

B Finite Vs Infinite Length

» Signals can be characterized as to whether they have finite or
infinite length set of values.

» Most finite length signals are used when dealing with discrete
time signals or a given sequence of length.

» Mathematically speaking, x(t) is a finite length signal if it is
nonzero over a finite interval t,<x(t)<t, where t,=-= & t,<e

» Infinite length signal, x(t), is defined as non zero over all real
numbers.

™ o000l TTT 7 0000
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Classification of Signals

* Even Vs. Odd
B Even Vs Odd

» An even or symmetric signal (discrete or continuous) is any signal such
that x (-t) = x(t) or x [-n] = x[n]
i Ev_en signals can be easily spotted as they are symmetric around the vertical
axis.

» An Odd signal (discrete or continuous), on the other hand, is a signal
such that x (-t)= -x(t) or x [-n]= -x[n]

» An odd signal is anti-symmetric! Even signal
» Any signal can be written as: AN toft)
X(n)=x . (n) + X, (n) /_/‘\ _
Ig(ﬂ) _ %[T(H) +x(— ﬂ)] Odd signal
Where, 1 1 o
() =2 [x(n)—x(=n) ~— >
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Basic Digital Sequences (Signals)

Unit impulse (unit sample)

5(n) = { é " ; 8

T
u(n) = Z 0(m) summing,
m=—o00

o(n) = wu(n)—u(n—1) differencing.

Sim)

1

-2=10 1 2 3 4 n
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Basic Digital Sequences (Signals)

Unit Ramp Signal

A
oo

()

n. forn =
0. form

uln}

F
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Basic Digital Sequences (Signals)

Exponential Signhal

If the parameter a is real, then x(n) is a real signal.

”“HHU

0<a<|

x(n)=a"

“T"TTTH"";_“._.__;;'_‘ _...mmmmmlm”m”
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Basic Digital Sequences (Signals)

Exponential Signhal
x(n)=da" for all n

When the parameter a is complex valued. it can be expressed as
a = re
where r and 6 are now the parameters, Hence we can express x(n) as

r.nejﬁn

x{n)

r'(cosén + jsinfn)
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Basic Digital Sequences (Signals)

Exponential Signal

0.9 I
06 }
03 |
o [ #ITWTTTQ TN e
S 74 weeedt 50 75 "
0.3t

{a) Graph of xgim) = {0.9)" cos =—
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Basic Digital Sequences (Signals)

Exponential Signhal

»
06

03 ¢t
-

o LJ'I ll_TT@TT!W.m.ﬁ;"_ aes e .:... ........ -

I

(b) Graph of x,(n) = ((0.9)" sin %‘

Dr. Ali J. Abboud 47 Dept. of Computer and Software Engineering



":[1: ) Basic Digital Sequences (Signals)

Sinusoids Signal

Sinusoids
r(n) = Asin(wn + )

Useful properties:

exp[j(wn +60)] = cos(wn + 0)+ jsin(wn + 0),
0 expli(wn + 0)] + expl—j(wn + 6)]
cos(wn +0) = 5 :
expli(wn + )] — expl—j(wn +0)]

sin(wn + 6) = 5
J
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Basic Digital Sequences (Signals)

Sinusoids Signal

A sine wave as the projection of a complex phasor onto the
Imaginary axis:

Im
'/’\

Re [
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Classification of DSP Systems

Linear Vs. Non-linear Systems

A linear system is any system that obeys the properties of scaling (homogeneity) and
superposition (additivity), while a nonlinear system is any system that does not obey at
least one of these.

To show that a system H obeys the scaling property is to show that

H (kf(t)) =kH (f (1))

To demonstrate that a system H obeys the superposition property of linearity 1s to show
that
H (f1 (1) + f2 (1)) = H (fi (2)) + H (2 (1))

[t 1s possible to check a system for linearity in a single (though larger) step. To do this,
simply combine the first two steps to get

H(kyfi(t) +Eafz(t)) = keH (f1(t)) + k2H (f2 (1))
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Classification of DSP Systems

Linear vs. Non-linear Systems

fit) — Q@ —

I

K

H

— y()

= f(t) — [H— @ —¥(1)

[

f1 1

(—I—)—}[ilﬁy

f, 1
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Classification of DSP Systems

Linear vs. Non-linear Systems
e Linear System: A system is linear if and only if
T{x,[N] + x,[N]} = Tix,[N]}+ T{x,[n]} (additivity)

and
T{ax[n]} = aT{[n]} (scaling)

e Examples
— Ideal Delay System

y[n] = x[n —n,]

T{x,[n] + x,[n]} = X;[h—n,]1+ x;[n—n,]
TGNy + TiX N = x,[h—-n_ 1+ x,[n—n_]
Tiax[nl} = ax,;[h —n,]
aTix[nl} - ax,[n—n_]
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Classification of DSP Systems

Time Invariant vs. Time Variant

A time invariant syvstem is one that does not depend on when it occurs: the shape of the
output does not change with a delay of the input. That is to say that for a system H where
H(f(t))=y(t), H is time invariant if for all T

H(f(t—-T))=y(t-T)

fif) —)Aﬁ Hi— y(tT) = ) — H %”A_) y{i=T)

f(tT) V(1)

When this property does not hold for a system, then it is said to be time variant . or
tlme-varying.
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Classification of DSP Systems

Time Invariant vs. Time Variant

¢ Time-Invariant (shift-invariant) Systems
- A time shift at the input causes corresponding time-shift at output

yln] = T{x[n]} = yln—n,]1 = TXIn —n, 1}
e Example
- Square

yIn] = (X[l Delay the input the outputis  y,|n]= (x[n-n,]Y
Delay the output gives y[n - ”a] = (x[n-— ”a]f

¢ Counter Example
- Compressor System

Delay the input the output is n|=x[Mn-n
Delay the output gives yln-n,]=xMmn-n,)]
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Classification of DSP Systems

Casual vs. Noncasual

A causal system 1s one that 15 nonanticipative ; that is, the output may depend on current
and past mmputs, but not future imputs. All "realtime” syvstems must be causal, since they
can not have future inputs available to them.

One may think the idea of future inputs does not seem to make much phyvsical sense;
however, we have only been dealing with time as our dependent variable so far, which is
not always the case. Imagine rather that we wanted to do image processing. Then the
dependent variable might represent pixels to the left and right (the " future”) of the current
position on the image, and we would have a noncausal system.

Causality

— A system is causal it's output is a function of only the current and
previous samples

Examples
— Backward Difference
yvin] = x[Nn] — x[n — 1]

Counter Example
— Forward Difference

vin] = x[n + 1] +~ x[n]
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Classification of DSP Systems

Stable vs. Nonstable

A stable system 1s one where the output does not diverge as long as the input does not
diverge. A bounded input produces a bounded output. It is from this property that this
type of system 1s referred to as bounded input-bounded output (BIBO) stable.
Representing this in a mathematical way, a stable system must have the following prop-
erty, where x (f) 1s the input and y (f) 1s the output. The output must satisfy the condition

y(t)| <My <o
when we have an mnput to the system that can be described as

z(t)]| € M, < x

M, and M, both represent a set of finite positive numbers and these relationships hold for
all of t.

If these conditions are not met, l.e. a system’s output grows without limit (diverges)
from a bounded input, then the system 1s unstable .
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Classification of DSP Systems

Stable vs. Nonstable

Stability (in the sense of bounded-input bounded-output BIBO)

— A system is stable if and only if every bounded input produces a
bounded output

X[N]| =B, <o = |y[n]| =B, <«

Example
- Square

y[n] = (x[n])*
if inputis bounded by x[n]| =B, < =<
output is bounded by |y[n]| = B < ==

Counter Example

— Log y[n] = log,, (Ix[n:“)

even if input is bounded by [x[n]| = B, < =

output not bounded for x[n] = 0 = y[0] = log,,(x[n])= —==

Dr. Ali J. Abboud >7 Dept. of Computer and Software Engineering



Classification of DSP Systems

Memoryless System

¢ Memoryless System

— A system is memoryless if the output y[n] at every value of n
depends only on the input x[n] at the same value of n

o Example Memoryless Systems
- Square

y[n] = (x[n])*
- S5ign
y[n] = signix[n]}

e Counter Example
— Ideal Delay System

yln] = x[n —n,]
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Characterization of Digital
Filters

Recursive and Nonrecursive Digital Filters

A recursive system is one in which the output y(n) is dependent
on one or more of its past outputs (y(n-1), y(n-2)G) while a non
recursive system is one in which the output is independent of any

past outputs .e.g. feedforward system having no feedback is a
non recursive system.

Y(ox(myrx(o-l) Y(n)y=x(n)+y(n-1)

x(n)

L 4
N
‘—é
N «—

L 4

Non Recursive System Recursive System
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